Occurrence of arsenic in ground water in the Choushui River alluvial fan, Taiwan.
نویسندگان
چکیده
An investigation of shallow ground water quality revealed that high arsenic (As) concentrations were found in both aquifers and aquitards in the southern Choushui River alluvial fan of Taiwan. A total of 655 geological core samples from 13 drilling wells were collected and analyzed. High As contents were found primarily in aquitards, to a maximum of 590 mg/kg. The contents were correlated with the locations of the marine sequences. Additionally, strong correlations among the As concentrations of core samples, the clay, and the geological age of the Holocene transgression were identified. Most of the As in ground water originated from the aquitard of the marine sequence. The high As content in marine formations with high clay contents may be attributable to the bioaccumulation of As in the sea organisms, which accrued and were deposited in the formation. A preliminary geogenic model of the origin of the high As concentration in the shallow sedimentary basin of the Choushui River alluvial fan of Taiwan is proposed.
منابع مشابه
High Recharge Areas in the Choushui River Alluvial Fan (Taiwan) Assessed from Recharge Potential Analysis and Average Storage Variation Indexes
High recharge areas significantly influence the groundwater quality and quantity in regional groundwater systems. Many studies have applied recharge potential analysis (RPA) to estimate groundwater recharge potential (GRP) and have delineated high recharge areas based on the estimated GRP. However, most of these studies define the RPA parameters with supposition, and this represents a major sou...
متن کاملAnalysis of Flood Hydraulic in Alluvial Fan River using CCHE2D Case Study: (Roodan River)
In this study the advantages and importance of a numerical model to predict and monitor the processes governing hydraulic changes alluvial fan river is discussed. For this reason and because of the importance of flow velocity and shear stresses resulting from the erosion of the river, A two-dimensional numerical model to simulate the CCHE2D river changes ranging from Roodan River is used. In th...
متن کاملAviscoelastic model for groundwater level changes in the Cho-Shui River alluvial fan after the Chi-Chi earthquake in Taiwan
[1] A viscoelastic model is developed to simulate the groundwater level changes in the Cho-Shui River alluvial fan in Taiwan after the Chi-Chi earthquake. An analytical solution is derived with the assumption that no leakage occurred in confined aquifers during the coseismic period. The solution is used to analyze the data collected from a high-density network of hydrologic monitoring wells in ...
متن کاملQuaternary cone forming model using sedimentary and geophysical (geoelectric) data in the southeast of Yazd city, Central Iran
Abstract: Alluvial fan are one of the most dynamic Quaternary landforms in arid areas.An alluvial fan in the southeast of the city Yazd was identified based on satellite images; in this research, the primary objective of this study is to investigate the surface and subsurface sedimentology of alluvial fan flasks. Twenty soil samples were taken for sedimentological studies. The result indicate ...
متن کاملAlluvial fan facies of the Qazvin Plain: paleoclimate and tectonic implications during Quaternary
The present research focuses on a detailed facies description and interpretation of five alluvial fans of the Qazvin Plain. Beside the tectonic activity that leads to the localization of the fans on the northern margin of the Qazvin Plain, the climate has a significant role in the occurrence of their facies. The alluvial fans are divided into three facies groups: group 1, group 2, and group 3. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 35 1 شماره
صفحات -
تاریخ انتشار 2006